login
A329010
a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.
3
1, 7, 151, 371, 13981, 64477, 1176211, 1333003, 96366841, 434627347, 7833057871, 17636587241, 635161281301, 2858836117417, 51465153629131, 28951056265019, 4169104690053361, 18761352574966687, 337708161046665991, 759848130726580511, 27354628073588539021
OFFSET
1,2
COMMENTS
a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
EXAMPLE
See Example in A327321.
MATHEMATICA
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *)
(* Peter J. C. Moses, Nov 01 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 08 2019
STATUS
approved