OFFSET
1,3
COMMENTS
Sequence is infinite since 11...1 is always a member.
Numbers whose product of digits is a power of ten (and thus necessarily must only have 1,2,4,5,8 as digits) is a subsequence. - Chai Wah Wu, Oct 19 2019
REFERENCES
Eric Angelini, Posting to Sequence Fans Mailing List, Oct 19 2019
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Eric Angelini, Revenant Numbers, Cinquante Signes, Oct 19 2019.
EXAMPLE
87 * 8 * 7 = 4872. As the string 87 is visible in the result, 87 is a revenant.
So is 792 because 792 * 7 * 9 * 2 = 99792.
And so is 9375 as 9375 * 9 * 3 * 7 * 5 = 8859375.
MAPLE
a:= proc(n) option remember; local k; if n=1 then 0 else
for k from 1+a(n-1) while searchtext(cat(k), cat(k*
mul(i, i=convert(k, base, 10))))=0 do od: k fi
end:
seq(a(n), n=1..75); # Alois P. Heinz, Oct 19 2019
MATHEMATICA
Select[Range[0, 10000], SequenceCount[IntegerDigits[#*(Times@@IntegerDigits[ #])], IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2019 *)
PROG
(Python)
from functools import reduce
from operator import mul
n, A328095_list = 0, []
while len(A328095_list) < 10000:
sn = str(n)
if sn in str(n*reduce(mul, (int(d) for d in sn))):
A328095_list.append(n)
n += 1 # Chai Wah Wu, Oct 19 2019
(PARI) is_A328095(n)={my(d, m); if(d=vecprod(digits(n))*n, m=10^logint(n, 10)*10; until(n>d\=10, d%m==n && return(1)), !n)} \\ M. F. Hasler, Oct 20 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved