login
A327582
a(n) = (17 * 7^(2*n+1) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.
5
5, 243, 11905, 583343, 28583805, 1400606443, 68629715705, 3362856069543, 164779947407605, 8074217422972643, 395636653725659505, 19386196032557315743, 949923605595308471405, 46546256674170115098843, 2280766577034335639843305, 111757562274682446352321943
OFFSET
0,1
COMMENTS
If p(n) = A000041(n) is the partition function, Watson (1938) proved that p(7^(2*m+1)*n + a(m)) == 0 mod 7^(m+1) for n >= 0 and m >= 1.
It is well-known that this result is true even for m = 0 (cf. A071746 and the references there).
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Wikipedia, G. N. Watson.
FORMULA
From Colin Barker, Sep 27 2019: (Start)
G.f.: (5 - 7*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)
EXAMPLE
For m=1 and n=0, p(7^(2*1+1)*0 + a(1)) = p(243) = 133978259344888 = 7^2 * 2734250190712.
For m=1 and n=1, p(7^(2*1+1)*1 + a(1)) = p(586) = 224282898599046831034631 = 7^2 * 4577202012225445531319.
PROG
(PARI) a(n) = (17 * 7^(2*n+1) + 1)/24; \\ Michel Marcus, Sep 25 2019
(PARI) Vec((5 - 7*x) / ((1 - x)*(1 - 49*x)) + O(x^15)) \\ Colin Barker, Sep 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Petros Hadjicostas, Sep 23 2019
STATUS
approved