login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A326714
a(n) = binomial(n,2) + (2-adic valuation of n).
1
0, 2, 3, 8, 10, 16, 21, 31, 36, 46, 55, 68, 78, 92, 105, 124, 136, 154, 171, 192, 210, 232, 253, 279, 300, 326, 351, 380, 406, 436, 465, 501, 528, 562, 595, 632, 666, 704, 741, 783, 820, 862, 903, 948, 990, 1036, 1081, 1132, 1176, 1226, 1275, 1328, 1378
OFFSET
1,2
COMMENTS
2^a(n) is the smallest integer m >= n such that binomial(m,n) is divisible by 2^binomial(n,2).
2^a(n) is conjectured to be the order of the smallest n-symmetric graph.
LINKS
Sebastian Jeon, Tanya Khovanova, 3-Symmetric Graphs, arXiv:2003.03870 [math.CO], 2020.
FORMULA
a(n) = A007814(n) + A161680(n).
EXAMPLE
Binomial(4,2) is 6. In addition, the 2-adic value of 4 is 2, so a(4) = 8.
MATHEMATICA
a[n_] := Binomial[n, 2] + IntegerExponent[n, 2]; Array[a, 60] (* Giovanni Resta, Dec 03 2019 *)
PROG
(Python)
for i in range(1, 70):
j = i
res = i*(i-1)//2
while j%2 == 0:
res = res + 1
j = j // 2
print(str(res), end = ', ')
(Python)
def A326714(n): return (n*(n-1)>>1)+(~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Sebastian Jeon and Tanya Khovanova, Dec 02 2019
STATUS
approved