login
A326144
a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).
13
1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
OFFSET
1,3
LINKS
FORMULA
a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).
MATHEMATICA
rad[n_] := Times @@ (First /@ FactorInteger@n);
a[n_] := GCD[n - rad[n], DivisorSigma[1, n] - rad[n] - n];
Array[a, 100] (* Jean-François Alcover, Dec 01 2021 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A066503(n) = (n - A007947(n));
A326143(n) = (sigma(n)-A007947(n)-n);
A326144(n) = gcd(A066503(n), A326143(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 09 2019
STATUS
approved