login
A325170
Heinz numbers of integer partitions with origin-to-boundary graph-distance equal to 2.
10
6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 33, 34, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 62, 65, 68, 69, 72, 74, 76, 77, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 104, 106, 108, 111, 112, 115, 116, 118, 119
OFFSET
1,1
COMMENTS
The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps East or South from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the minimum triangular partition contained inside the diagram.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
25: {3,3}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Select[Range[200], otb[Reverse[primeMS[#]]]==2&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 05 2019
STATUS
approved