login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257990 The side-length of the Durfee square of the partition having Heinz number n. 39
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

The Durfee square of a partition is the largest square that fits inside the Ferrers board of the partition.

We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.

In the Maple program the subprogram B yields the partition with Heinz number n.

First appearance of k is a(prime(k)^k) = k. - Gus Wiseman, Apr 12 2019

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.

G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.

M. Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000

Findstat, St000183: The side length of the Durfee square of an integer partition

FORMULA

For a partition (p_1 >= p_2 >= ... > = p_r) the side-length of its Durfee square is the largest i such that p_i >=i.

EXAMPLE

a(9)=2; indeed, 9 = 3*3 is the Heinz number of the partition [2,2] and, clearly its Durfee square has side-length =2.

MAPLE

with(numtheory): a := proc (p) local B, S, i: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: S := {}: for i to nops(B(p)) do if i <= B(p)[nops(B(p))+1-i] then S := `union`(S, {i}) else  end if end do: max(S) end proc: seq(a(n), n = 2 .. 146);

# second Maple program:

a:= proc(n) local l, t;

      l:= sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`);

      for t from nops(l) to 1 by -1 do if l[t]>=t then break fi od; t

    end:

seq(a(n), n=1..120);  # Alois P. Heinz, May 10 2016

MATHEMATICA

a[n_] := a[n] = Module[{l, t}, l = Reverse[Sort[Flatten[Table[PrimePi[ f[[1]] ], {f, FactorInteger[n]}, {f[[2]]}]]]]; For[t = Length[l], t >= 1, t--, If[l[[t]] >= t, Break[]]]; t]; Table[a[n], {n, 1, 120}] (* Jean-Fran├žois Alcover, Feb 17 2017, after Alois P. Heinz *)

CROSSREFS

Positions of 1's are A093641. Positions of 2's are A325164. Positions of 3's are A307386.

Cf. A006918, A056239, A062457, A065770, A112798, A115720, A117485, A215366, A252464, A325163, A325169.

Sequence in context: A280801 A085006 A300820 * A257743 A033272 A324907

Adjacent sequences:  A257987 A257988 A257989 * A257991 A257992 A257993

KEYWORD

nonn

AUTHOR

Emeric Deutsch, May 18 2015

EXTENSIONS

a(1)=0 prepended by Alois P. Heinz, May 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 14:47 EST 2020. Contains 338625 sequences. (Running on oeis4.)