login
A324442
a(n) = Product_{i=1..n, j=1..n} (i^2 + j).
0
1, 2, 180, 6652800, 402265543680000, 109211487076824381849600000, 295382703175843424854047228769075200000000, 15385012566245626089929288743828190926813939944652800000000000
OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Dec 27 2023: (Start)
a(n) ~ c * n^(2*n^2 + n/2 - 1/4) / exp(2*n^2 - 2*Pi*n^(3/2)/3 - Pi*sqrt(n)/2), where c = 0.31906...
For n>1, a(n) = a(n-1) * Gamma(n - i*sqrt(n)) * Gamma(n + i*sqrt(n)) * Gamma(n^2 + n + 1) * sinh(Pi*sqrt(n)) / (Pi * n^(5/2) * Gamma(n^2)), where i is the imaginary unit. (End)
MAPLE
a:= n-> mul(mul(i^2+j, i=1..n), j=1..n):
seq(a(n), n=0..8); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[i^2 + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
Table[Product[Pochhammer[1 + i^2, n], {i, 1, n}], {n, 1, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved