login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324241
Number of set partitions of [2n] where each subset is again partitioned into n nonempty subsets.
2
1, 2, 10, 100, 1736, 42651, 1324114, 49330996, 2141770488, 106175420065, 5917585057033, 366282501223002, 24930204592110338, 1850568574258750360, 148782988064395367700, 12879868072770703598760, 1194461517469808134322280, 118144018577011379763287565
OFFSET
0,2
LINKS
FORMULA
a(n) = A324162(2n,n).
a(n) = A007820(n) + A088218(n) for n > 0. - Seiichi Manyama, May 08 2022
EXAMPLE
a(2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)
*binomial(n-1, j-1)*Stirling2(j, k), j=k..n))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..18);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
a[n_] := b[2n, n];
a /@ Range[0, 18] (* Jean-François Alcover, May 05 2020, after Maple *)
PROG
(PARI) a(n) = if(n==0, 1, stirling(2*n, n, 2)+binomial(2*n, n)/2); \\ Seiichi Manyama, May 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 02 2019
STATUS
approved