OFFSET
0,5
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Partition of a set
FORMULA
E.g.f. of column k>0: exp((exp(x)-1)^k/k!).
Sum_{k=1..n} k * T(n,k) = A325929(n).
T(n,k) = Sum_{j=0..floor(n/k)} (k*j)! * Stirling2(n,k*j)/(k!^j * j!) for k > 0. - Seiichi Manyama, May 07 2022
EXAMPLE
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 5, 3, 1;
0, 15, 10, 6, 1;
0, 52, 45, 25, 10, 1;
0, 203, 241, 100, 65, 15, 1;
0, 877, 1428, 511, 350, 140, 21, 1;
0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
...
MAPLE
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
nmax = 10;
col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;; ]] Range[k, nmax]!;
T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
PROG
(PARI) T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 02 2019
STATUS
approved