login
A323972
Number of 8 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{8,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
2
1, 21, 259, 2570, 18546, 106067, 508484, 2117690, 7852836, 26400811, 81594028, 234380304, 631352789, 1606571023, 3885713191, 8979237218, 19912769178, 42540796862, 87841523926, 175820917355, 341996038445, 647926774508, 1197980968295, 2165529201795, 3833173915877
OFFSET
0,2
LINKS
FORMULA
G.f.: -(6*x^17 -95*x^16 +707*x^15 -3278*x^14 +10588*x^13 -25239*x^12 +45878*x^11 -64775*x^10 +71619*x^9 -62024*x^8 +41650*x^7 -21151*x^6 +7977*x^5 -1820*x^4 +343*x^3 +38*x^2 +4*x+1) / (x-1)^17.
CROSSREFS
Row (or column) 8 of array in A323846.
Sequence in context: A360804 A322500 A241632 * A125433 A135122 A231380
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Feb 09 2019
STATUS
approved