login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323846 Array read by antidiagonals: T(m,n) = number of m X n matrices M with entries {0,1,2} that have M_{1,1}=0, M_{m,n}=2, are such that the rows and columns are monotonic without jumps of 2, and satisfy M_{(i+1),(j+1)} = M_{i,j} + (0 or 1). 12
0, 0, 0, 1, 0, 1, 3, 4, 4, 3, 6, 16, 25, 16, 6, 10, 41, 94, 94, 41, 10, 15, 85, 266, 386, 266, 85, 15, 21, 155, 632, 1247, 1247, 632, 155, 21, 28, 259, 1332, 3423, 4657, 3423, 1332, 259, 28, 36, 406, 2570, 8342, 14795, 14795, 8342, 2570, 406, 36, 45, 606, 4631, 18546, 41586, 54219, 41586, 18546, 4631, 606, 45 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

The monotonicity condition requires that M_{(i+1),j} = M_{i,j} + (0 or 1); M_{i,(j+1)} = M_{i,j} + (0 or 1).

These matrices can be cut into three connected pieces, containing the 0s, 1s, and 2s; there are two vertex-disjoint paths from the north-and-east edges of the matrix to the south-and-west edges.

Row (or column) n >= 1 has a linear recurrence (with constant coefficients) of order 2n+1. - Alois P. Heinz, Feb 07 2019

REFERENCES

D. E. Knuth, Email to N. J. A. Sloane, Feb 05 2019.

LINKS

Alois P. Heinz, Antidiagonals n = 1..80, flattened

EXAMPLE

Array begins:

    0   0    1    3     6    10 ...

    0   0    4   16    41    85 ...

    1   4   25   94   266   632 ...

    3  16   94  386  1247  3423 ...

    6  41  266 1247  4657 14795 ...

   10  85  632 3427 14795 54219 ...

...

The 4 examples when m=2 and n=3 are

    011   011  012   012

    012   112  012   112

CROSSREFS

Rows 1-10 give: A000217(n-2), A323847, A323967, A323968, A323969, A323970, A323971, A323972, A323973, A323974.

Main diagonal gives A306322.

Cf. A132823, A252876, A229428.

Sequence in context: A222430 A222275 A000916 * A014241 A199185 A279781

Adjacent sequences:  A323841 A323842 A323843 * A323847 A323848 A323849

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Feb 06 2019

EXTENSIONS

More terms from Alois P. Heinz, Feb 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 07:51 EDT 2019. Contains 322381 sequences. (Running on oeis4.)