login
A323619
Expansion of e.g.f. 1 - LambertW(-log(1+x))*(2 + LambertW(-log(1+x)))/2.
1
1, 1, 0, 2, 3, 44, 260, 3534, 40796, 658440, 11066184, 220005840, 4750650432, 114430365048, 2993377996440, 85208541290040, 2611784941760640, 85941161628865344, 3018822193183216320, 112805065528683216192, 4467115744449046110720, 186900232401341222964480, 8237944325702047624948224
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000272(k).
a(n) ~ n^(n-2) / ((exp(exp(-1))-1)^(n - 3/2) * exp(n - 3*(1 - exp(-1))/2)). - Vaclav Kotesovec, Jan 20 2019
MAPLE
seq(n!*coeff(series(1-LambertW(-log(1+x))*(2+LambertW(-log(1+x)))/2, x=0, 23), x, n), n=0..22); # Paolo P. Lava, Jan 28 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[1 - LambertW[-Log[1 + x]] (2 + LambertW[-Log[1 + x]])/2, {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[Sum[StirlingS1[n, k] k^(k - 2), {k, n}], {n, 22}]]
PROG
(PARI) {a(n) = if(n==0, 1, sum(k=1, n, stirling(n, k, 1)*k^(k-2)))};
vector(25, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
(Magma) [n le 0 select 1 else (&+[StirlingFirst(n, k)*k^(k-2): k in [1..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
(Sage) [1] + [sum((-1)^(k+n)*stirling_number1(n, k)*k^(k-2) for k in (1..n)) for n in (1..25)] # G. C. Greubel, Feb 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 20 2019
STATUS
approved