OFFSET
0,1
FORMULA
From Jianing Song, Jan 23 2019: (Start)
Equals (1/6)*log(12) = (1/6)*A016635.
Equals Sum_{k>=1} H(2*k-1)/4^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 30 2021
EXAMPLE
0.4141511082980000517049515799731464734664151377572...
MATHEMATICA
RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* Georg Fischer, Apr 04 2020 *)
PROG
(PARI) log( 2^(1/2)*3^(1/3) / 6^(1/6) ) \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jan 20 2019
EXTENSIONS
a(99) corrected by Georg Fischer, Apr 04 2020
STATUS
approved