login
A323458
Decimal expansion of log(2^(1/2)*3^(1/3) / 6^(1/6)).
0
4, 1, 4, 1, 5, 1, 1, 0, 8, 2, 9, 8, 0, 0, 0, 0, 5, 1, 7, 0, 4, 9, 5, 1, 5, 7, 9, 9, 7, 3, 1, 4, 6, 4, 7, 3, 4, 6, 6, 4, 1, 5, 1, 3, 7, 7, 5, 7, 2, 0, 9, 9, 9, 3, 3, 2, 9, 3, 4, 2, 3, 9, 2, 1, 0, 4, 0, 4, 6, 9, 2, 2, 8, 5, 9, 6, 6, 6, 3, 9, 9, 6, 8, 0, 8, 9, 0, 4, 0, 1, 4, 6, 7, 7, 6, 1, 5, 7, 7, 3
OFFSET
0,1
FORMULA
From Jianing Song, Jan 23 2019: (Start)
Equals (1/6)*log(12) = (1/6)*A016635.
Equals (1/3)*log(2) + (1/6)*log(3) = (1/3)*A002162 + (1/6)*A002391. (End)
Equals Sum_{k>=1} H(2*k-1)/4^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 30 2021
EXAMPLE
0.4141511082980000517049515799731464734664151377572...
MATHEMATICA
RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* Georg Fischer, Apr 04 2020 *)
PROG
(PARI) log( 2^(1/2)*3^(1/3) / 6^(1/6) ) \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
Suggested by A230191.
Sequence in context: A330571 A318281 A126114 * A074393 A267633 A095666
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jan 20 2019
EXTENSIONS
a(99) corrected by Georg Fischer, Apr 04 2020
STATUS
approved