login
T(n, k) = p(n) - (p(k) - t(k-1)) with t(n) = A000005(|n|) for n != 0 and t(0) = 0, p(n) = A000010(n) for n > 0 and p(0) = 0, for n >= 0 and 0 <= k <= n, triangle read by rows.
1

%I #5 Mar 18 2019 07:29:04

%S 1,2,0,2,0,1,3,1,2,2,3,1,2,2,2,5,3,4,4,4,3,3,1,2,2,2,1,2,7,5,6,6,6,5,

%T 6,4,5,3,4,4,4,3,4,2,2,7,5,6,6,6,5,6,4,4,4,5,3,4,4,4,3,4,2,2,2,3,11,9,

%U 10,10,10,9,10,8,8,8,9,4,5,3,4,4,4,3,4,2,2,2,3,-2,2

%N T(n, k) = p(n) - (p(k) - t(k-1)) with t(n) = A000005(|n|) for n != 0 and t(0) = 0, p(n) = A000010(n) for n > 0 and p(0) = 0, for n >= 0 and 0 <= k <= n, triangle read by rows.

%H Peter Luschny, <a href="/A323226/a323226.png">Plot of the function</a>.

%e Triangle starts:

%e [0] 1

%e [1] 2, 0

%e [2] 2, 0, 1

%e [3] 3, 1, 2, 2

%e [4] 3, 1, 2, 2, 2

%e [5] 5, 3, 4, 4, 4, 3

%e [6] 3, 1, 2, 2, 2, 1, 2

%e [7] 7, 5, 6, 6, 6, 5, 6, 4

%e [8] 5, 3, 4, 4, 4, 3, 4, 2, 2

%e [9] 7, 5, 6, 6, 6, 5, 6, 4, 4, 4

%p with(numtheory):

%p T := (n, k) -> phi(n) - (phi(k) - tau(k-1)):

%p seq(seq(T(n, k), k=0..n), n=0..12);

%t phi[n_] := EulerPhi[n]; tau[n_] := If[n == 0, 0, DivisorSigma[0, n]];

%t T[n_, k_] := phi[n] - (phi[k] - tau[k - 1]);

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten

%Y Cf. A000005, A000010.

%K sign,tabl,easy

%O 0,2

%A _Peter Luschny_, Feb 19 2019