This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323226 T(n, k) = p(n) - (p(k) - t(k-1)) with t(n) = A000005(|n|) for n != 0 and t(0) = 0, p(n) = A000010(n) for n > 0 and p(0) = 0, for n >= 0 and 0 <= k <= n, triangle read by rows. 1
 1, 2, 0, 2, 0, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 5, 3, 4, 4, 4, 3, 3, 1, 2, 2, 2, 1, 2, 7, 5, 6, 6, 6, 5, 6, 4, 5, 3, 4, 4, 4, 3, 4, 2, 2, 7, 5, 6, 6, 6, 5, 6, 4, 4, 4, 5, 3, 4, 4, 4, 3, 4, 2, 2, 2, 3, 11, 9, 10, 10, 10, 9, 10, 8, 8, 8, 9, 4, 5, 3, 4, 4, 4, 3, 4, 2, 2, 2, 3, -2, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Peter Luschny, Plot of the function. EXAMPLE Triangle starts: [0]  1 [1]  2, 0 [2]  2, 0, 1 [3]  3, 1, 2, 2 [4]  3, 1, 2, 2, 2 [5]  5, 3, 4, 4, 4, 3 [6]  3, 1, 2, 2, 2, 1, 2 [7]  7, 5, 6, 6, 6, 5, 6, 4 [8]  5, 3, 4, 4, 4, 3, 4, 2, 2 [9]  7, 5, 6, 6, 6, 5, 6, 4, 4, 4 MAPLE with(numtheory): T := (n, k) -> phi(n) - (phi(k) - tau(k-1)): seq(seq(T(n, k), k=0..n), n=0..12); MATHEMATICA phi[n_] := EulerPhi[n]; tau[n_] := If[n == 0, 0, DivisorSigma[0, n]]; T[n_, k_] := phi[n] - (phi[k] - tau[k - 1]); Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten CROSSREFS Cf. A000005, A000010. Sequence in context: A265247 A022879 A064984 * A307197 A038555 A138108 Adjacent sequences:  A323223 A323224 A323225 * A323227 A323228 A323229 KEYWORD sign,tabl,easy AUTHOR Peter Luschny, Feb 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 07:29 EDT 2019. Contains 328315 sequences. (Running on oeis4.)