login
A323060
a(n) = R_(prime(n)#) / Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (10^k - 1)/9.
2
1, 91, 8190090090909099099181
OFFSET
1,2
COMMENTS
a(4) has 196 digits.
The numbers R_k = 1, 11, 111, ... are sometimes called "Rep-units" or "repunits". The octal versions of a(1) through a(4) may be obtained from the decimal versions by replacing each 6 with a 4, each 7 with a 5, each 8 with a 6, and each 9 with a 7. Similar relations exist for other bases.
REFERENCES
Author?, "The Ultimate Number Series Challenge", Vidya, Oct 1988, p. 9.
LINKS
EXAMPLE
R_30 / (11*111*11111) = 8190090090909099099181.
MATHEMATICA
f[n_] := (10^n - 1)/9; Array[f[Product[Prime@ i, {i, #}]]/Product[f@ Prime@ j, {j, #}] &, 3] (* Michael De Vlieger, Jan 19 2019 *)
PROG
(PARI) R(n) = (10^n-1)/9; \\ A002275
primo(n) = prod(i=1, n, prime(i)); \\ A002110
a(n) = R(primo(n))/prod(j=1, n, R(prime(j))); \\ Michel Marcus, Jan 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick A. Thomas, Jan 19 2019
STATUS
approved