

A323063


Coefficients arising in the enumeration of configurations of linear chains.


3



0, 0, 0, 0, 1, 21, 282, 3102, 30583, 282368, 2494567
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence, is equal to p_{n,m}^{(l)} with m = 0 and l = 5.
For a possible interpretation of this sequence (in the context of a 5dimensional hypercubic lattice), see the comments by Bert Dobbelaere for the sequence A038748 about a cubic lattice.
We have p_{n,0}^{(2)} = A038746(n), p_{n,0}^{(3)} = A038748(n), and p_{n,0}^{(4)} = A323037(n). For p_{n,0}^{(l)} for l = 6..10, see Table II (p. 1094) in the paper by Nemirovsky et al. (1992).


LINKS

Table of n, a(n) for n=1..11.
M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 12531267.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Eq. 5 (p. 1090).


CROSSREFS

Cf. A038726, A038729, A038746, A038748, A323037.
Sequence in context: A243421 A028053 A223996 * A028033 A176711 A025987
Adjacent sequences: A323060 A323061 A323062 * A323064 A323065 A323066


KEYWORD

nonn,more


AUTHOR

Petros Hadjicostas, Jan 03 2019


STATUS

approved



