login
A322981
If n is the k-th prime power > 1, a(n) = k, otherwise a(n) = 0.
3
0, 1, 2, 3, 4, 0, 5, 6, 7, 0, 8, 0, 9, 0, 0, 10, 11, 0, 12, 0, 0, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 18, 0, 0, 0, 0, 19, 0, 0, 0, 20, 0, 21, 0, 0, 0, 22, 0, 23, 0, 0, 0, 24, 0, 0, 0, 0, 0, 25, 0, 26, 0, 0, 27, 0, 0, 28, 0, 0, 0, 29, 0, 30, 0, 0, 0, 0, 0, 31, 0, 32, 0, 33, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 0, 35
OFFSET
1,3
COMMENTS
This is a ("corrected") variant of A095874, which uses the list of "powers of primes" A000961 instead of prime powers A246655. - M. F. Hasler, Jun 16 2021
LINKS
FORMULA
a(n) = A010055(n) * A025528(n) = A069513(n) * A025528(n).
a(n) = A025528(A069513(n)*n), when assuming that A025528(0) = 0.
a(A000961(1+n)) = n for all n >= 1.
PROG
(PARI)
up_to = 16384;
A322981list(up_to) = { my(v=vector(up_to), k=0); for(n=1, up_to, if(isprimepower(n), k++; v[n] = k, v[n] = 0)); (v); };
v322981 = A322981list(up_to);
A322981(n) = v322981[n];
(PARI) A322981(n)=if(isprimepower(n), sum(i=1, exponent(n), primepi(sqrtnint(n, i)))) \\ M. F. Hasler, Jun 16 2021
CROSSREFS
Cf. A000961 (powers of primes, including 1), A010055, A025528, A069513, A095874 (analog based on A000961), A246655 (prime powers > 1).
Cf. A049084.
Sequence in context: A126013 A119974 A195828 * A232749 A181578 A065332
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 01 2019
STATUS
approved