login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322455
Sum of n-th powers of the roots of x^3 - 20*x^2 - 9*x - 1.
1
3, 20, 418, 8543, 174642, 3570145, 72983221, 1491970367, 30499826474, 623497246004, 12745935328713, 260560681614770, 5326550547499821, 108888803019858063, 2225975576006274419, 45504837297851710768, 930239414944110543194, 19016557810138882535211
OFFSET
0,1
COMMENTS
Let A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
In general, for integer h, k let
X = (B^h*C^k)/A^(h+k),
Y = (C^h*A^k)/B^(h+k),
Z = (A^h*B^k)/C^(h+k).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (1,3) and its other half is A320918.
FORMULA
a(n) = (B*C^3/A^4)^n + (C*A^3/B^4)^n + (A*B^3/C^4)^n.
a(n) = 20*a(n-1) + 9*a(n-2) + a(n-3) for n > 2.
G.f.: (3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3). - Colin Barker, Dec 09 2018
MATHEMATICA
CoefficientList[Series[(3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
PROG
(PARI) Vec((3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3) + O(x^20)) \\ Colin Barker, Dec 09 2018
(PARI) polsym(x^3 - 20*x^2 - 9*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
CROSSREFS
Similar sequences with (h,k) values: A033304 (0,1), A215076 (1,1), A274032 (1,2).
Sequence in context: A003150 A326869 A203194 * A138897 A365365 A189603
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Dec 09 2018
STATUS
approved