OFFSET
0,1
COMMENTS
Let A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
In general, for integer h, k let
X = (B^h*C^k)/A^(h+k),
Y = (C^h*A^k)/B^(h+k),
Z = (A^h*B^k)/C^(h+k).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (1,3) and its other half is A320918.
LINKS
Colin Barker, Table of n, a(n) for n = 0..750
Index entries for linear recurrences with constant coefficients, signature (20,9,1).
FORMULA
a(n) = (B*C^3/A^4)^n + (C*A^3/B^4)^n + (A*B^3/C^4)^n.
a(n) = 20*a(n-1) + 9*a(n-2) + a(n-3) for n > 2.
G.f.: (3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3). - Colin Barker, Dec 09 2018
MATHEMATICA
CoefficientList[Series[(3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
PROG
(PARI) Vec((3 - 40*x - 9*x^2) / (1 - 20*x - 9*x^2 - x^3) + O(x^20)) \\ Colin Barker, Dec 09 2018
(PARI) polsym(x^3 - 20*x^2 - 9*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Dec 09 2018
STATUS
approved