login
A321971
a(n) is the number of distinct arrangements of the letters in the English word for n.
0
6, 6, 60, 24, 24, 6, 60, 120, 12, 6, 120, 360, 10080, 20160, 1260, 2520, 7560, 6720, 1120, 360, 45360, 30240, 1108800, 1814400, 907200, 181440, 1663200, 3326400, 151200, 360, 181440, 60480, 831600, 907200, 907200, 90720, 9979200, 1663200, 453600, 120, 20160
OFFSET
1,1
COMMENTS
Counts the distinct permutations of letters of the words 'one', 'two', 'three' etc.
EXAMPLE
For n = 1, a(1) = anagrams of 'one': 3! = 6.
For n = 9, a(9) = anagrams of 'nine' = 4! / 2! due to four letters but the letter 'n' occurring twice.
MATHEMATICA
a[n_] := Multinomial @@ Tally[Characters[StringReplace[IntegerName[n, "Words"], {"\[Hyphen]" -> "", " " -> "", ", " -> ""}]]][[;; , 2]]; Array[a, 50] (* Amiram Eldar, Nov 22 2018 *)
CROSSREFS
Related to A005589, which gives the length of the words 'one', 'two', 'three', etc.
Sequence in context: A262893 A084675 A075179 * A074949 A078290 A269888
KEYWORD
nonn,word
AUTHOR
Anthony Clohesy, Nov 22 2018
EXTENSIONS
More terms from Amiram Eldar, Nov 22 2018
STATUS
approved