login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321311
Number of linear chord diagrams having n+2 chords and minimal chord length n.
1
10, 26, 79, 252, 796, 2468, 7564, 23012, 69676, 210308, 633484, 1905572, 5726956, 17201348, 51645004, 155016932, 465214636, 1395971588, 4188570124, 12567021092, 37703684716, 113116297028, 339359376844, 1018099102052, 3054339249196, 9163101633668, 27489472673164
OFFSET
1,1
FORMULA
a(n) = A293881(n+2,n).
a(n) = 5*a(n-1) - 6*a(n-2) for n > 5.
a(n) = A293156(n) - 5*2^(n-1).
G.f.: x*(10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)). - Andrew Howroyd, Nov 17 2018
2*3^4*a(n) = 2^3*73*3^n-5*3^4*2^n for n>3. - R. J. Mathar, Jan 25 2023
MATHEMATICA
Join[{10, 26, 79}, LinearRecurrence[{5, -6}, {252, 796}, 24]] (* Jean-François Alcover, Nov 24 2018 *)
PROG
(PARI) Vec((10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ Andrew Howroyd, Nov 17 2018
CROSSREFS
A diagonal of A293881.
Sequence in context: A192254 A368502 A220155 * A051966 A221568 A092774
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 17 2018
STATUS
approved