login
Number of linear chord diagrams having n+2 chords and minimal chord length n.
1

%I #31 Jan 29 2023 12:42:58

%S 10,26,79,252,796,2468,7564,23012,69676,210308,633484,1905572,5726956,

%T 17201348,51645004,155016932,465214636,1395971588,4188570124,

%U 12567021092,37703684716,113116297028,339359376844,1018099102052,3054339249196,9163101633668,27489472673164

%N Number of linear chord diagrams having n+2 chords and minimal chord length n.

%H Andrew Howroyd, <a href="/A321311/b321311.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5, -6)

%F a(n) = A293881(n+2,n).

%F a(n) = 5*a(n-1) - 6*a(n-2) for n > 5.

%F a(n) = A293156(n) - 5*2^(n-1).

%F G.f.: x*(10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)). - _Andrew Howroyd_, Nov 17 2018

%F 2*3^4*a(n) = 2^3*73*3^n-5*3^4*2^n for n>3. - _R. J. Mathar_, Jan 25 2023

%t Join[{10, 26, 79}, LinearRecurrence[{5, -6}, {252, 796}, 24]] (* _Jean-François Alcover_, Nov 24 2018 *)

%o (PARI) Vec((10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ _Andrew Howroyd_, Nov 17 2018

%Y A diagonal of A293881.

%Y Cf. A257113, A293156.

%K nonn,easy

%O 1,1

%A _Seiichi Manyama_, Nov 17 2018