login
A319740
The 10-adic integer cube root of one eleventh (1/11), that is, satisfying 11 * x^3 == 1 (mod 10^n), for all n.
9
1, 3, 1, 7, 6, 1, 8, 5, 7, 9, 7, 9, 3, 0, 1, 6, 1, 0, 5, 4, 5, 9, 3, 9, 9, 0, 3, 1, 3, 8, 6, 5, 2, 1, 9, 3, 3, 2, 8, 3, 4, 4, 6, 3, 5, 0, 0, 9, 7, 2, 8, 2, 5, 7, 3, 4, 8, 5, 9, 3, 0, 9, 2, 9, 1, 2, 1, 8, 5, 8, 7, 3, 3, 0, 5, 7, 4, 6, 4, 2, 5, 0, 3, 5, 5, 9, 4, 7, 1, 3
OFFSET
1,2
LINKS
EXAMPLE
45016103979758167131^3 * 11 == 1 (mod 10^20).
MAPLE
op([1, 3], padic:-rootp(11*x^3-1, 10, 100)); # Robert Israel, Jan 03 2019
PROG
(PARI) seq(n)={Vecrev(digits(lift(chinese( Mod((1/11 + O(5^n))^(1/3), 5^n), Mod((1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018
CROSSREFS
Cf. A225402, A225411, A225412 (10-adic cube root of -1/3, 1/3, 1/9).
Sequence in context: A101624 A166519 A213043 * A275662 A110441 A111806
KEYWORD
nonn,base,easy
AUTHOR
Patrick A. Thomas, Sep 26 2018
EXTENSIONS
Terms a(56) and beyond from Andrew Howroyd, Nov 26 2018
STATUS
approved