login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225412 Digits of the 10-adic integer (1/9)^(1/3). 10
9, 2, 5, 1, 1, 7, 1, 3, 6, 2, 6, 3, 3, 8, 2, 1, 4, 1, 0, 2, 7, 1, 2, 2, 4, 6, 1, 6, 0, 1, 0, 1, 2, 7, 2, 8, 2, 8, 8, 3, 6, 7, 0, 7, 7, 7, 2, 2, 6, 2, 6, 9, 9, 6, 8, 1, 3, 2, 1, 5, 4, 3, 7, 4, 7, 7, 6, 9, 6, 1, 4, 0, 2, 0, 9, 6, 3, 6, 6, 1, 9, 1, 9, 9, 7, 4, 9, 8, 8, 7, 7, 3, 0, 8, 7, 7, 8, 8, 0, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the 10's complement of A153042.

Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

FORMULA

p = ...711529, q = A153042 = ...288471, p + q = 0. - Seiichi Manyama, Aug 04 2019

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

EXAMPLE

       9^3 == -1      (mod 10).

      29^3 == -11     (mod 10^2).

     529^3 == -111    (mod 10^3).

    1529^3 == -1111   (mod 10^4).

   11529^3 == -11111  (mod 10^5).

  711529^3 == -111111 (mod 10^6).

MAPLE

op([1, 3], padic:-rootp(9*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019

PROG

(PARI) n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))

(PARI) upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019

(PARI) Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019

(Ruby)

def A225412(n)

  ary = [9]

  a = 9

  n.times{|i|

    b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))

    ary << (b - a) / (10 ** (i + 1))

    a = b

  }

  ary

end

p A225412(100) # Seiichi Manyama, Aug 13 2019

CROSSREFS

Cf. A309600, A319740 (10-adic cube root of 1/11).

Digits of 10-adic integers:

A153042 ((-1/9)^(1/3));

A225406 (     9^(1/3));

A225409 (  (-9)^(1/3)).

Sequence in context: A089065 A248319 A154398 * A176019 A079059 A154838

Adjacent sequences:  A225409 A225410 A225411 * A225413 A225414 A225415

KEYWORD

nonn,base

AUTHOR

Aswini Vaidyanathan, May 07 2013

EXTENSIONS

Name edited by Seiichi Manyama, Aug 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 01:25 EDT 2019. Contains 328211 sequences. (Running on oeis4.)