login
A318938
If n=0 then 1 otherwise 16*(1+22*A318935(n))*(sum of cubes of odd divisors of n).
2
1, 368, 3184, 10304, 25712, 46368, 89152, 126592, 205936, 278576, 401184, 490176, 719936, 808864, 1095296, 1298304, 1647728, 1808352, 2410288, 2524480, 3239712, 3544576, 4241088, 4477824, 5766208, 5796368, 6998432, 7521920, 8844928, 8975520, 11233152, 10963456, 13182064, 13724928, 15646176, 15950592, 19463984
OFFSET
0,2
LINKS
P. J. C. Lamont, The number of Cayley integers of given norm, Proceedings of the Edinburgh Mathematical Society, 25.1 (1982): 101-103. See (7).
MAPLE
with(numtheory);
A007814 := n -> padic[ordp](n, 2):
T:= n -> add(2^(3*m), m=0..A007814(n));
f := proc(n) local t2, i, d;
if n=0 then return(1); fi;
t2:=0; for d in divisors(n) do if (d mod 2) = 1 then t2:=t2+d^3; fi; od:
16*(1+22*T(n))*t2;
end;
[seq(f(k), k=0..50)];
PROG
(Python)
from sympy import divisor_sigma
def A318938(n): return (1+22*((1<<(3*(m:=(~n&n-1).bit_length())+3))-1)//7)*divisor_sigma(n>>m, 3)<<4 if n else 1 # Chai Wah Wu, Jul 11 2022
CROSSREFS
Cf. A318935.
Sequence in context: A098823 A252222 A173055 * A240006 A097501 A239411
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 15 2018
STATUS
approved