login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318795 Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations. 11
1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..78.

FORMULA

T(n,k) = T(k,k) for n > k.

EXAMPLE

Array begins:

===========================================================

n\k| 1 2  3  4  5   6   7    8    9    10     11     12

---+-------------------------------------------------------

1  | 1 1  1  1  1   1   1    1    1     1      1      1 ...

2  | 1 4  5 11 14  24  30   45   55    76     91    119 ...

3  | 1 4 10 24 51 114 219  424  768  1352   2278   3759 ...

4  | 1 4 10 33 78 224 549 1403 3292  7677  16934  36581 ...

5  | 1 4 10 33 91 277 792 2341 6654 18802  51508 138147 ...

6  | 1 4 10 33 91 298 881 2825 8791 27947  87410 272991 ...

7  | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...

8  | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...

9  | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...

...

MATHEMATICA

permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];

M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];

Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Sep 12 2018, after Andrew Howroyd *)

PROG

(PARI)

permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

c(p, q, k)={polcoef(1/prod(i=1, #p, prod(j=1, #q, (1 - x^lcm(p[i], q[j]) + O(x*x^k))^gcd(p[i], q[j]))), k)}

M(m, n, k)={my(s=0); forpart(p=m, forpart(q=n, s+=permcount(p) * permcount(q) * c(p, q, k))); s/(m!*n!)}

for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print);

CROSSREFS

Rows 2..7 are A053307, A052365, A052366, A052367, A052372, A052373.

Main diagonal is A007716.

Cf. A214398, A246106, A304942, A318805.

Sequence in context: A021247 A016522 A153843 * A099575 A173740 A028275

Adjacent sequences:  A318792 A318793 A318794 * A318796 A318797 A318798

KEYWORD

nonn,tabl

AUTHOR

Andrew Howroyd, Sep 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 09:45 EDT 2019. Contains 328345 sequences. (Running on oeis4.)