login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052365 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under row and column permutations. 8
1, 1, 4, 10, 24, 51, 114, 219, 424, 768, 1352, 2278, 3759, 5978, 9328, 14181, 21164, 30943, 44560, 63063, 88088, 121321, 165152, 222157, 295857, 389948, 509456, 659697, 847552, 1080452, 1367814, 1719652, 2148596, 2668107, 3294676, 4046069 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also Molien series for group of structure S_3 X S_3 = (Z_3 X Z_3).O_2^+(3) and order 36, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9) containing the all-ones vector.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

Index entries for Molien series

FORMULA

G.f.: -(x^10+2*x^8+x^7+7*x^6-3*x^5+4*x^3+x^2-2*x+1) / ((x^4-x^3+x-1)*(x^3-1)^3*(x+1)^3*(x-1)^5).

Another form for g.f.: u1/u2, where u1 := 1 + x + 2*x^3 + 10*x^4 + 17*x^5 + 19*x^6 + 20*x^7 + 29*x^8 + 37*x^9 + 34*x^10 + 23*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + x^15 u2 := (1-x^2)^4*(1-x^3)^4*(1-x^6);

MATHEMATICA

permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];

M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];

a[n_] := M[3, 3, n];

a /@ Range[0, 40] (* Jean-Fran├žois Alcover, Sep 03 2019, after Andrew Howroyd in A318795 *)

CROSSREFS

Row 3 of A318795.

Cf. A002724, A053307, A052366, A052267, A092091.

Sequence in context: A022569 A093831 A274582 * A107659 A162588 A280541

Adjacent sequences:  A052362 A052363 A052364 * A052366 A052367 A052368

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Mar 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 15:04 EDT 2020. Contains 335772 sequences. (Running on oeis4.)