login
A318474
Multiplicative with a(p^e) = 2^A000045(e+1).
5
1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 32, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 256, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 64, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 8192, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 64, 32, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4, 512, 2, 8, 8, 16, 2, 8, 2, 16, 8
OFFSET
1,2
FORMULA
a(n) = 2^A318473(n).
a(n) = A318472(A064549(n)).
a(A064549(n)) = a(n)*A318472(n).
MATHEMATICA
Array[Apply[Times, 2^Fibonacci[# + 1] & /@ FactorInteger[#][[All, -1]]] - Boole[# == 1] &, 105] (* Michael De Vlieger, Sep 02 2018 *)
PROG
(PARI) A318474(n) = factorback(apply(e -> 2^fibonacci(1+e), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 29 2018
STATUS
approved