This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318184 a(n) = 2^(n * (n - 1)/2) * 3^((n - 1) * (n - 2)) * n^(n - 3). 5
 1, 1, 72, 186624, 13604889600, 24679069470425088, 1036715783690392172494848, 962459606796748852884396910313472, 19112837387997044228759204010262201783812096, 7926475921550134182551017087135940323782552453120000000, 67406870957147550175650545441605700298239194363455522532832462241792 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Discriminant of Fermat polynomials. F(0)=0, F(1)=1 and F(n) = 3x F(n - 1) -2 F(n - 2) if n>1. LINKS Muniru A Asiru, Table of n, a(n) for n = 1..39 Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. Eric Weisstein's World of Mathematics, Discriminant Eric Weisstein's World of Mathematics, Fermat Polynomial MAPLE seq(2^(n*(n-1)/2)*3^((n-1)*(n-2))*n^(n-3), n=1..12); # Muniru A Asiru, Dec 07 2018 MATHEMATICA F[0] = 0; F[1] = 1; F[n_] := F[n] = 3 x F[n - 1] - 2 F[n - 2]; a[n_] := Discriminant[F[n], x]; Array[a, 11] (* Jean-François Alcover, Dec 07 2018 *) PROG (PARI) a(n) = 2^(n*(n-1)/2) * 3^((n-1)*(n-2)) * n^(n-3); \\ Michel Marcus, Dec 07 2018 CROSSREFS Cf. A193678, A007701, A007701, A193678, A303941. Sequence in context: A276014 A260779 A279656 * A290182 A008703 A135320 Adjacent sequences:  A318181 A318182 A318183 * A318185 A318186 A318187 KEYWORD nonn AUTHOR Rigoberto Florez, Aug 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 15:10 EST 2019. Contains 329999 sequences. (Running on oeis4.)