OFFSET
1,2
COMMENTS
A number x is totally transitive if (1) whenever prime(y) divides x it follows that y is totally transitive and (2) if prime(y) divides x and prime(z) divides y then prime(z) also divides x.
EXAMPLE
The sequence of all totally transitive rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
4: (oo)
6: (o(o))
8: (ooo)
12: (oo(o))
14: (o(oo))
16: (oooo)
18: (o(o)(o))
24: (ooo(o))
28: (oo(oo))
32: (ooooo)
36: (oo(o)(o))
38: (o(ooo))
42: (o(o)(oo))
48: (oooo(o))
54: (o(o)(o)(o))
56: (ooo(oo))
64: (oooooo)
72: (ooo(o)(o))
76: (oo(ooo))
78: (o(o)(o(o)))
84: (oo(o)(oo))
96: (ooooo(o))
98: (o(oo)(oo))
MATHEMATICA
subprimes[n_]:=If[n==1, {}, Union@@Cases[FactorInteger[n], {p_, _}:>FactorInteger[PrimePi[p]][[All, 1]]]];
trmgQ[n_]:=Or[n==1, And[Divisible[n, Times@@subprimes[n]], And@@Cases[FactorInteger[n], {p_, _}:>trmgQ[PrimePi[p]]]]];
Select[Range[100], trmgQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 20 2018
STATUS
approved