login
Expansion of e.g.f. exp((1 - exp(-4*x))/4).
10

%I #16 Feb 08 2022 10:57:39

%S 1,1,-3,5,25,-343,2133,-3603,-112975,1938897,-18008275,55198805,

%T 1753746377,-45801271943,649021707397,-4682002329795,-50792700319903,

%U 2692784088681889,-59182401177647011,801759226622986917,-2169423359710146183,-263145142263538606519,9869607872225170545333

%N Expansion of e.g.f. exp((1 - exp(-4*x))/4).

%H Seiichi Manyama, <a href="/A318179/b318179.txt">Table of n, a(n) for n = 0..474</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>

%F a(n) = Sum_{k=0..n} (-4)^(n-k)*Stirling2(n,k).

%F a(0) = 1; a(n) = Sum_{k=1..n} (-4)^(k-1)*binomial(n-1,k-1)*a(n-k).

%F a(n) = (-4)^n*BellPolynomial_n(-1/4). - _Peter Luschny_, Aug 20 2018

%p seq(n!*coeff(series(exp((1-exp(-4*x))/4),x=0,23),x,n),n=0..22); # _Paolo P. Lava_, Jan 09 2019

%t nmax = 22; CoefficientList[Series[Exp[(1 - Exp[-4 x])/4], {x, 0, nmax}], x] Range[0, nmax]!

%t Table[Sum[(-4)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 22}]

%t a[n_] := a[n] = Sum[(-4)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

%t Table[(-4)^n BellB[n, -1/4], {n, 0, 22}] (* _Peter Luschny_, Aug 20 2018 *)

%Y Column k=4 of A309386.

%Y Cf. A004213, A007696, A009235, A014182, A317996, A318180, A318181.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Aug 20 2018