This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318179 Expansion of e.g.f. exp((1 - exp(-4*x))/4). 7
 1, 1, -3, 5, 25, -343, 2133, -3603, -112975, 1938897, -18008275, 55198805, 1753746377, -45801271943, 649021707397, -4682002329795, -50792700319903, 2692784088681889, -59182401177647011, 801759226622986917, -2169423359710146183, -263145142263538606519, 9869607872225170545333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Eric Weisstein's World of Mathematics, Bell Polynomial FORMULA a(n) = Sum_{k=0..n} (-4)^(n-k)*Stirling2(n,k). a(0) = 1; a(n) = Sum_{k=1..n} (-4)^(k-1)*binomial(n-1,k-1)*a(n-k). a(n) = (-4)^n*BellPolynomial_n(-1/4). - Peter Luschny, Aug 20 2018 MAPLE seq(n!*coeff(series(exp((1-exp(-4*x))/4), x=0, 23), x, n), n=0..22); # Paolo P. Lava, Jan 09 2019 MATHEMATICA nmax = 22; CoefficientList[Series[Exp[(1 - Exp[-4 x])/4], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-4)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 22}] a[n_] := a[n] = Sum[(-4)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}] Table[(-4)^n BellB[n, -1/4], {n, 0, 22}] (* Peter Luschny, Aug 20 2018 *) CROSSREFS Cf. A004213, A007696, A009235, A014182, A317996, A318180, A318181. Sequence in context: A119882 A276968 A074701 * A327468 A140127 A226318 Adjacent sequences:  A318176 A318177 A318178 * A318180 A318181 A318182 KEYWORD sign AUTHOR Ilya Gutkovskiy, Aug 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)