login
A317724
Smallest prime q < A266829(n) such that both A266829(n)^(q-1) == 1 (mod q^2) and q^(A266829(n)-1) == 1 (mod A266829(n)^2), i.e., smallest prime q less than A266829(n) such that q and A266829(n) form a double Wieferich prime pair.
1
2, 83, 2903, 911, 3, 5
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Double Wieferich Prime Pair
EXAMPLE
a(2) = 83, because 83 is the smallest prime q such that A266829(2) = 4871 satisfies both 4871^(q-1) == 1 (mod q^2) and q^(4871-1) == 1 (mod 4871^2).
PROG
(PARI) forprime(p=3, , forprime(q=2, p-1, if(Mod(p, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1, print1(q, ", "); break)))
CROSSREFS
Cf. A266829. Supersequence of A124121.
Cf. A282293.
Sequence in context: A266201 A225807 A232770 * A099373 A169601 A367900
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Aug 05 2018
STATUS
approved