The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317499 Coefficients in expansion of 1/(1 + 2*x - 3*x^3). 2
 1, -2, 4, -5, 4, 4, -23, 58, -104, 139, -104, -104, 625, -1562, 2812, -3749, 2812, 2812, -16871, 42178, -75920, 101227, -75920, -75920, 455521, -1138802, 2049844, -2733125, 2049844, 2049844, -12299063, 30747658, -55345784, 73794379, -55345784, -55345784 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The coefficients in the expansion of 1/(1 + 2*x - 3*x^3) are given by the sequence generated by the row sums in triangle A317503. Coefficients in expansion of 1/(1 + 2*x - 3*x^3) are given by the sum of numbers along second Layer skew diagonals pointing top-left in triangle A303901 ((3-2x)^n) and by the sum of numbers along second Layer skew diagonals pointing top-right in triangle A317498 ((-2+3x)^n), see links. REFERENCES Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 396, 397. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-2,0,3). FORMULA a(0)=1, a(n) = -2*a(n-1) + 3*a(n-3) for n = 0,1...; a(n)=0 for n < 0. a(n) = (2^(-n)*(2^n + (-3-i*sqrt(3))^n*(3-2*i*sqrt(3)) + (-3+i*sqrt(3))^n*(3+2*i*sqrt(3)))) / 7 where i=sqrt(-1). - Colin Barker, Aug 02 2018 MAPLE seq(coeff(series(1/(1+2*x-3*x^3), x, n+1), x, n), n=0..40); # Muniru A Asiru, Aug 01 2018 MATHEMATICA CoefficientList[Series[1/(1 + 2 x - 3 x^3), {x, 0, 40}], x]. a[0] = 1; a[n_] := a[n] = If[n < 0, 0, -2 * a[n - 1] + 3 * a[n - 3]]; Table[a[n], {n, 0, 40}] // Flatten. LinearRecurrence[{-2, 0, 3}, {1, -2, 4}, 41]. PROG (GAP) a:=[1, -2, 4];; for n in [4..40] do a[n]:=-2*a[n-1]+3*a[n-3]; od; a; # Muniru A Asiru, Aug 01 2018 (PARI) Vec(1 / ((1 - x)*(1 + 3*x + 3*x^2)) + O(x^40)) \\ Colin Barker, Aug 02 2018 CROSSREFS Cf. A317502, A317503. Cf. A303901, A317498. Sequence in context: A123546 A339069 A334422 * A004581 A212790 A317558 Adjacent sequences: A317496 A317497 A317498 * A317500 A317501 A317502 KEYWORD sign,easy AUTHOR Zagros Lalo, Jul 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 10:31 EST 2022. Contains 358424 sequences. (Running on oeis4.)