login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317499 Coefficients in expansion of 1/(1 + 2*x - 3*x^3). 2
1, -2, 4, -5, 4, 4, -23, 58, -104, 139, -104, -104, 625, -1562, 2812, -3749, 2812, 2812, -16871, 42178, -75920, 101227, -75920, -75920, 455521, -1138802, 2049844, -2733125, 2049844, 2049844, -12299063, 30747658, -55345784, 73794379, -55345784, -55345784 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The coefficients in the expansion of 1/(1 + 2*x - 3*x^3) are given by the sequence generated by the row sums in triangle A317503.

Coefficients in expansion of 1/(1 + 2*x - 3*x^3) are given by the sum of numbers along second Layer skew diagonals pointing top-left in triangle A303901 ((3-2x)^n) and by the sum of numbers along second Layer skew diagonals pointing top-right in triangle A317498 ((-2+3x)^n), see links.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 396, 397.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Zagros Lalo, Second layer skew diagonals in center-justified triangle of coefficients in expansion of (3 - 2x)^n

Zagros Lalo, Second layer skew diagonals in center-justified triangle of coefficients in expansion of (-2 + 3x)^n

Index entries for linear recurrences with constant coefficients, signature (-2,0,3).

FORMULA

a(0)=1, a(n) = -2*a(n-1) + 3*a(n-3) for n = 0,1...; a(n)=0 for n < 0.

a(n) = (2^(-n)*(2^n + (-3-i*sqrt(3))^n*(3-2*i*sqrt(3)) + (-3+i*sqrt(3))^n*(3+2*i*sqrt(3)))) / 7 where i=sqrt(-1). - Colin Barker, Aug 02 2018

MAPLE

seq(coeff(series(1/(1+2*x-3*x^3), x, n+1), x, n), n=0..40); # Muniru A Asiru, Aug 01 2018

MATHEMATICA

CoefficientList[Series[1/(1 + 2 x - 3 x^3), {x, 0, 40}], x].

a[0] = 1; a[n_] := a[n] = If[n < 0, 0, -2 * a[n - 1] + 3 * a[n - 3]]; Table[a[n], {n, 0, 40}] // Flatten.

LinearRecurrence[{-2, 0, 3}, {1, -2, 4}, 41].

PROG

(GAP) a:=[1, -2, 4];; for n in [4..40] do a[n]:=-2*a[n-1]+3*a[n-3]; od; a; # Muniru A Asiru, Aug 01 2018

(PARI) Vec(1 / ((1 - x)*(1 + 3*x + 3*x^2)) + O(x^40)) \\ Colin Barker, Aug 02 2018

CROSSREFS

Cf. A317502, A317503.

Cf. A303901, A317498.

Sequence in context: A123546 A339069 A334422 * A004581 A212790 A317558

Adjacent sequences:  A317496 A317497 A317498 * A317500 A317501 A317502

KEYWORD

sign,easy

AUTHOR

Zagros Lalo, Jul 31 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 01:41 EST 2021. Contains 341934 sequences. (Running on oeis4.)