|
|
A317496
|
|
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 3 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
|
|
4
|
|
|
1, 1, 1, 1, 3, 1, 6, 1, 9, 1, 12, 9, 1, 15, 27, 1, 18, 54, 1, 21, 90, 27, 1, 24, 135, 108, 1, 27, 189, 270, 1, 30, 252, 540, 81, 1, 33, 324, 945, 405, 1, 36, 405, 1512, 1215, 1, 39, 495, 2268, 2835, 243, 1, 42, 594, 3240, 5670, 1458, 1, 45, 702, 4455, 10206, 5103, 1, 48, 819, 5940, 17010, 13608, 729
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A013610 ((1+3*x)^n) and along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in center-justified triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.)
The coefficients in the expansion of 1/(1-x-3x^3) are given by the sequence generated by the row sums.
The row sums give A084386.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.863706527819..., when n approaches infinity.
|
|
REFERENCES
|
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366.
|
|
LINKS
|
Table of n, a(n) for n=0..69.
Zagros Lalo, Second layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 3x)^n
Zagros Lalo, Second layer skew diagonals in center-justified triangle of coefficients in expansion of (3 + x)^n
|
|
FORMULA
|
T(n,k) = 3^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
|
|
EXAMPLE
|
Triangle begins:
1;
1;
1;
1, 3;
1, 6;
1, 9;
1, 12, 9;
1, 15, 27;
1, 18, 54;
1, 21, 90, 27;
1, 24, 135, 108;
1, 27, 189, 270;
1, 30, 252, 540, 81;
1, 33, 324, 945, 405;
1, 36, 405, 1512, 1215;
1, 39, 495, 2268, 2835, 243;
1, 42, 594, 3240, 5670, 1458;
1, 45, 702, 4455, 10206, 5103;
1, 48, 819, 5940, 17010, 13608, 729;
|
|
MATHEMATICA
|
t[n_, k_] := t[n, k] = 3^k/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 3 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten
|
|
PROG
|
(GAP) Flat(List([0..20], n->List([0..Int(n/3)], k->3^k/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
|
|
CROSSREFS
|
Row sums give A084386.
Cf. A013610, A027465, A317497, A304236, A304249.
Sequence in context: A199783 A329645 A318772 * A304236 A145063 A202851
Adjacent sequences: A317493 A317494 A317495 * A317497 A317498 A317499
|
|
KEYWORD
|
tabf,nonn,easy
|
|
AUTHOR
|
Zagros Lalo, Jul 31 2018
|
|
STATUS
|
approved
|
|
|
|