login
A317252
(Number of 4 X 4 pandiagonal magic squares with distinct positive entries less than n)/384.
0
1, 3, 8, 15, 29, 48, 80, 121, 182, 260, 367, 497, 673, 886, 1158, 1477, 1875, 2341, 2913, 3570, 4355, 5258, 6323, 7526, 8933, 10515, 12338, 14373, 16697, 19282, 22214, 25448, 29084, 33089, 37561, 42449, 47885, 53817, 60370, 67489, 75316, 83794, 93084, 103106
OFFSET
17,2
LINKS
L. Ng, Magic Counting with Inside-Out Polytopes, San Francisco State University, 2018.
FORMULA
G.f.: x^17*(1 + x)*(1 + 2*x + 6*x^2 + 8*x^3 + 17*x^4 + 20*x^5 + 36*x^6 + 38*x^7 + 58*x^8 + 57*x^9 + 76*x^10 + 68*x^11 + 84*x^12 + 70*x^13 + 81*x^14 + 57*x^15 + 59*x^16 + 34*x^17 + 38*x^18 + 16*x^19 + 14*x^20)/((1 - x^3)*(1 - x^4)*(1 - x^6)*(1 - x^7)*(1 - x^8)*(1 - x^10)).
CROSSREFS
Sequence in context: A097589 A015631 A116686 * A135350 A068038 A196087
KEYWORD
nonn
AUTHOR
Louis Ng, Aug 13 2018
STATUS
approved