login
A316379
Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 4, 6 or 8 king-move adjacent elements, with upper left element zero.
1
2, 86, 464, 3909, 29877, 228485, 1755475, 13526926, 103864609, 798742227, 6141746167, 47215496369, 363020134838, 2791071078327, 21458690076514, 164983572412837, 1268461438191737, 9752439552518046, 74980741649152893
OFFSET
1,1
COMMENTS
Column 4 of A316383.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) +20*a(n-2) +48*a(n-3) -228*a(n-4) -749*a(n-5) -337*a(n-6) +42*a(n-7) +3576*a(n-8) +11148*a(n-9) +24999*a(n-10) +13867*a(n-11) -43655*a(n-12) -75724*a(n-13) -162509*a(n-14) -162802*a(n-15) +25775*a(n-16) +175237*a(n-17) +515244*a(n-18) +991244*a(n-19) -2078283*a(n-20) -3308327*a(n-21) -1197780*a(n-22) +3576764*a(n-23) +8047205*a(n-24) -1483094*a(n-25) -3422152*a(n-26) -3634592*a(n-27) -6505616*a(n-28) +5506602*a(n-29) -1051835*a(n-30) +9547248*a(n-31) +670104*a(n-32) -3020771*a(n-33) +863818*a(n-34) -2608844*a(n-35) -786793*a(n-36) +1268466*a(n-37) -922393*a(n-38) +423451*a(n-39) +44439*a(n-40) -238610*a(n-41) +185616*a(n-42) -87520*a(n-43) +24217*a(n-44) +1501*a(n-45) -3713*a(n-46) +1444*a(n-47) -308*a(n-48) -6*a(n-49) -4*a(n-50) for n>51
EXAMPLE
Some solutions for n=5
..0..0..0..0. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..0..0..1
..1..1..0..1. .1..0..1..0. .1..1..0..0. .1..0..1..0. .1..0..1..1
..1..1..1..0. .0..0..0..0. .1..0..1..0. .1..1..0..0. .0..1..0..1
..0..1..0..0. .1..0..0..1. .0..1..1..1. .1..0..0..1. .1..0..1..1
..1..0..1..0. .0..1..1..0. .0..1..1..0. .0..0..0..1. .1..1..1..0
CROSSREFS
Cf. A316383.
Sequence in context: A304897 A316579 A304593 * A306139 A317372 A358807
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 30 2018
STATUS
approved