login
A316376
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 6 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 13, 24, 1, 1, 82, 60, 60, 82, 1, 1, 272, 217, 418, 217, 272, 1, 1, 908, 749, 2186, 2186, 749, 908, 1, 1, 3076, 2822, 12281, 16817, 12281, 2822, 3076, 1, 1, 10444, 10516, 72713, 128585, 128585, 72713, 10516, 10444, 1, 1, 35480, 38934
OFFSET
1,5
COMMENTS
Table starts
.1.....1.....1.......1........1..........1...........1.............1
.1.....4.....8......24.......82........272.........908..........3076
.1.....8....13......60......217........749........2822.........10516
.1....24....60.....418.....2186......12281.......72713........423041
.1....82...217....2186....16817.....128585.....1076888.......8858964
.1...272...749...12281...128585....1396959....16730969.....194865364
.1...908..2822...72713..1076888...16730969...294007902....4935143895
.1..3076.10516..423041..8858964..194865364..4935143895..118878261056
.1.10444.38934.2465234.72193958.2259023326.82582592407.2848273549547
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 20] for n>21
k=4: [order 70] for n>72
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..0
..0..1..1..0. .1..1..1..0. .1..1..0..0. .0..1..0..0. .0..1..1..1
..1..1..1..0. .1..0..1..0. .1..1..1..1. .0..1..1..0. .1..1..0..1
..0..1..1..0. .1..0..0..0. .0..0..1..1. .0..1..1..0. .1..0..0..1
..1..0..1..0. .0..1..0..1. .1..1..0..0. .1..0..0..1. .1..0..0..1
CROSSREFS
Column 2 is A303882.
Column 3 is A304546.
Column 4 is A304547.
Sequence in context: A304894 A316576 A304551 * A306136 A317271 A304419
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 30 2018
STATUS
approved