OFFSET
1,1
COMMENTS
LINKS
H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Publications of the Small Systems Group Oldenburg, preprint, 1973.
H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417.
P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
Index entries for linear recurrences with constant coefficients, signature (4).
FORMULA
a(n) = 5^2 * 4^(n-1) with n >= 1.
a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - Chai Wah Wu, Aug 29 2019
a(n) = 25 * A000302(n-1). - Alois P. Heinz, Aug 29 2019
E.g.f.: 25*(exp(4*x) - 1)/4. - Stefano Spezia, Oct 28 2023
EXAMPLE
25 = 5^2 = 3^2 + 4^2,
100 = 10^2 = 6^2 + 8^2,
5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares.
MATHEMATICA
Array[25*4^(# - 1) &, 24] (* Michael De Vlieger, Aug 19 2019 *)
PROG
(PARI) a(n) = 25 * 4^(n-1); \\ Jinyuan Wang, Aug 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bernard Schott, Aug 17 2019
STATUS
approved