login
A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
OFFSET
0,8
COMMENTS
For fixed k > 0, T(n,k) ~ exp(Pi*sqrt(k*n/3)) * k^(1/4) / (3^(1/4) * 2^((k+3)/2) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
T is the convolution triangle of A000009 (see A357368). - Peter Luschny, Oct 19 2022
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A286335(n,k-i).
Sum_{k=1..n} k * T(n,k) = A325915(n).
G.f. of column k: (-1 + Product_{j>=1} (1 + x^j))^k. - Alois P. Heinz, Jan 29 2021
EXAMPLE
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000009 (for n>0), A327380, A327381, A327382, A327383, A327384, A327385, A327386, A327387, A327388.
Main diagonal and lower diagonals give: A000012, A001477, A000096.
Row sums give A304969.
T(2n,n) gives A324595.
Sequence in context: A350310 A280817 A060086 * A177975 A340995 A363733
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2019
STATUS
approved