login
A307651
a(n) is the determinant of the Vandermonde matrix of the digits of n.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, -7, -6, -5, -4, -3, -2, -1, 0
OFFSET
0,14
LINKS
FORMULA
a(n) != 0 iff n belongs to A010784.
a(n) = 0 for any n > 9876543210.
EXAMPLE
| 2^0 2^1 2^2 |
a(234) = det | 3^0 3^1 3^2 | = 2.
| 4^0 4^1 4^2 |
PROG
(PARI) a(n) = my (d=digits(n)); matdet(matrix(#d, #d, r, c, d[r]^(c-1)))
CROSSREFS
See A307710 for the factorial base variant.
Sequence in context: A319657 A255594 A030108 * A297330 A037904 A070615
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Apr 20 2019
STATUS
approved