login
A307261
Expansion of Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).
1
1, 1, 4, 13, 42, 130, 397, 1197, 3566, 10517, 30760, 89293, 257397, 737220, 2099215, 5945594, 16756258, 47004829, 131286914, 365203797, 1012031772, 2794446326, 7690009600, 21094325177, 57687762889, 157306741287, 427777384499, 1160250104637, 3139067594584, 8472525405830, 22815639395641
OFFSET
0,3
COMMENTS
First differences of the binomial transform of A006906.
MAPLE
a:=series(mul(1/(1-k*x^k/(1-x)^k), k=1..100), x=0, 31): seq(coeff(a, x, n), n=0..30); # Paolo P. Lava, Apr 03 2019
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 01 2019
STATUS
approved