login
A306293
Number of binary words of length n such that in every prefix and in every suffix the number of 0's and the number of 1's differ by at most two.
4
1, 2, 4, 6, 10, 16, 26, 42, 70, 110, 194, 288, 550, 754, 1586, 1974, 4630, 5168, 13634, 13530, 40390, 35422, 120146, 92736, 358390, 242786, 1071074, 635622, 3205030, 1664080, 9598706, 4356618, 28763350, 11405774, 86224514, 29860704, 258542470, 78176338
OFFSET
0,2
COMMENTS
All terms with index n > 0 are even.
FORMULA
G.f.: -(x+1)*(4*x^7-4*x^6-7*x^5-5*x^4+5*x^3+5*x^2-x-1) / ((3*x^2-1) *(2*x^2-1) *(x^2+x-1) *(x^2-x-1)).
a(n) <= A306306(n).
EXAMPLE
a(3) = 6: 001, 010, 011, 100, 101, 110.
a(4) = 10: 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1100, 1101.
a(5) = 16: 00101, 00110, 01001, 01010, 01011, 01100, 01101, 01110, 10001, 10010, 10011, 10100, 10101, 10110, 11001, 11010.
a(6) = 26: 001010, 001011, 001100, 001101, 001110, 010010, 010011, 010100, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001, 101010, 101011, 101100, 101101, 110001, 110010, 110011, 110100, 110101.
a(7) = 42: 0010101, 0010110, 0011001, ..., 1100110, 1101001, 1101010.
a(8) = 70: 00101010, ..., 00111100, ..., 11000011, ..., 11010101.
MAPLE
a:= n-> `if`(n<2, 1+n, 2*(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>,
<-6|23|-22|8>>^iquo(n-2, 2, 'r').[<<2, 5, 13, 35>>,
<<3, 8, 21, 55>>][1+r])[1, 1]):
seq(a(n), n=0..50);
CROSSREFS
Bisections of a(n+2)/2 give: A007689 (even part), A001906(n+2) (odd part).
Sequence in context: A364580 A128588 A023613 * A307795 A065795 A293077
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Feb 04 2019
STATUS
approved