|
|
A305738
|
|
Numbers k such that k!*T(k) - 1 is prime, where T(k) is the k-th triangular number.
|
|
1
|
|
|
2, 4, 28, 34, 47, 62, 228, 256, 258, 341, 848, 1362, 1709, 2262, 2692, 7907, 10396, 10501
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The PFGW program has been used to certify all the terms up to a(18), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Jun 24 2018
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Maheswara Rao Valluri, Primes of the form p = 1 + n! Sum n, for some n ∈ N*, arXiv:1803.11461 [math.GM], 2018.
|
|
MATHEMATICA
|
Do[If[ PrimeQ[n(n +1)!/2 - 1], Print@ n], {n, 3000}]
|
|
PROG
|
(PARI) isok(n) = ispseudoprime(n(n+1)!/ 2 - 1);
|
|
CROSSREFS
|
Cf. A302859, A301373.
Sequence in context: A059719 A264930 A226347 * A323447 A227303 A066228
Adjacent sequences: A305735 A305736 A305737 * A305739 A305740 A305741
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Maheswara Rao Valluri, Jun 22 2018
|
|
EXTENSIONS
|
a(16)-a(18) from Giovanni Resta, Jun 24 2018
|
|
STATUS
|
approved
|
|
|
|