|
|
A301373
|
|
Numbers k such that (k+1)!*k/2 + 1 is prime.
|
|
3
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 24, 251, 374, 953, 1104, 1507, 3390, 4443, 5762
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The associated primes are A300559(a(n)) = A180119(a(n))+1 = A001286(a(n)+1)+1. - M. F. Hasler, Apr 10 2018
Looking for primes of the form p(n) = 1 + n! f(n) with a simple polynomial function f, it appears that the choice f(n) = n(n+1)/2 = A000217 is one of the most successful choices for getting a maximum of primes for n = 1..20. - M. F. Hasler, Apr 14 2018
The PFGW program has been used to certify all the terms up to a(23), using a deterministic test which exploits the factorization of a(n) - 1. - Giovanni Resta, Jun 24 2018
|
|
LINKS
|
Table of n, a(n) for n=1..23.
Maheswara Rao Valluri, Primes of the form p = 1 + n! Sum n, for some n ∈ N*, arXiv:1803.11461 [math.GM], 2018.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[n(n +1)!/2 +1], Print@ n], {n, 4000}] (* Robert G. Wilson v, Apr 05 2018 *)
|
|
PROG
|
(PARI) isok(k) = ispseudoprime((k+1)! * k / 2 + 1);
|
|
CROSSREFS
|
Cf. A090703, A300559, A180119, A001286.
See A302859 for the actual primes.
Sequence in context: A191890 A247814 A082918 * A193096 A309129 A307345
Adjacent sequences: A301370 A301371 A301372 * A301374 A301375 A301376
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Daniel Suteu, Apr 03 2018
|
|
EXTENSIONS
|
a(21) from Robert G. Wilson v, Apr 05 2018
a(22) from Vaclav Kotesovec, Apr 06 2018
a(23) from Giovanni Resta, Jun 24 2018
|
|
STATUS
|
approved
|
|
|
|