login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305444
a(n) = Product_{p is odd and prime and divisor of n} (p - 2).
3
1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 9, 1, 11, 5, 3, 1, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 1, 9, 15, 15, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, 15, 11, 51, 1, 27, 5, 17, 27, 57, 3, 59, 29, 5, 1, 33, 9, 65, 15, 21, 15, 69, 1, 71, 35, 3, 17
OFFSET
1,5
COMMENTS
Denominator of c_n = Product_{odd p| n} (p-1)/(p-2). Numerator is A173557. [Yamasaki and Yamasaki]. - N. J. A. Sloane, Jan 19 2020
LINKS
Yasuo Yamasaki and Aiichi Yamasaki, On the Gap Distribution of Prime Numbers, Kyoto University Research Information Repository, October 1994. MR1370273 (97a:11141).
FORMULA
Sum_{k=1..n} a(k) ~ c * n^2, where c = (2/3) * Product_{p prime} (1 - 3/(p*(p+1))) = 0.1950799046... . - Amiram Eldar, Nov 12 2022
a(n) = abs( Sum_{d divides n, d odd} mobius(d) * phi(d) ). - Peter Bala, Feb 01 2024
MAPLE
A305444 := proc(n) mul(d - 2, d = numtheory[factorset](n) minus {2}) end proc:
MATHEMATICA
a[n_] := If[n == 1, 1, Times @@ (DeleteCases[FactorInteger[n][[All, 1]], 2] - 2)];
Array[a, 100] (* Jean-François Alcover, Apr 08 2020*)
PROG
(PARI) a(n)={my(f=factor(n>>valuation(n, 2))[, 1]); prod(i=1, #f, f[i]-2)} \\ Andrew Howroyd, Aug 12 2018
(Python)
from math import prod
from sympy import primefactors
def A305444(n): return prod(p-2 for p in primefactors(n>>(~n&n-1).bit_length())) # Chai Wah Wu, Sep 08 2023
CROSSREFS
Cf. A173557.
Sequence in context: A339903 A187367 A307410 * A002945 A171232 A093423
KEYWORD
nonn,easy,mult
AUTHOR
Markus Sigg, Aug 12 2018
STATUS
approved