login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305412
a(n) = F(n)*F(n+1) + F(n+2), where F = A000045 (Fibonacci numbers).
2
1, 3, 5, 11, 23, 53, 125, 307, 769, 1959, 5039, 13049, 33929, 88451, 230957, 603667, 1578823, 4130829, 10810469, 28295411, 74067401, 193893263, 507590495, 1328842801, 3478880593, 9107706243, 23844088085, 62424315227, 163428464759, 427860443429, 1120151837069
OFFSET
0,2
FORMULA
G.f.: (1 - 5*x^2 - 2*x^3 + x^4)/((x + 1)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5).
5*a(n) = (-1)^(n+1) +5*F(n+2) + A002878(n). - R. J. Mathar, Nov 14 2019
MATHEMATICA
Table[Fibonacci[n] Fibonacci[n+1] + Fibonacci[n+2], {n, 0, 30}]
PROG
(Magma) [Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2): n in [0..30]];
(GAP) List([0..35], n -> Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2)); # Muniru A Asiru, Jun 06 2018
CROSSREFS
Cf. A059769: F(n)*F(n+1) - F(n+2), with offset 3.
Equals A000045 + A286983.
First differences are listed in A059727 (after 0).
Sequence in context: A037446 A113151 A269964 * A094810 A139376 A074892
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 05 2018
STATUS
approved