login
A139376
Expansion of 1/((1-x^2*c(x))(1-x-x^2)) where c(x) is the g.f. of A000108.
2
1, 1, 3, 5, 11, 23, 54, 136, 374, 1103, 3441, 11186, 37472, 128325, 446834, 1576251, 5618950, 20204874, 73190075, 266810125, 978044403, 3602795670, 13329486459, 49509151332, 184540129492, 690061739789, 2587941606367, 9731587992993
OFFSET
0,3
COMMENTS
Diagonal sums of the Fibonacci-Catalan triangle A139375.
LINKS
FORMULA
a(n) = Sum_{k=0..n} F(k+1)*A132364(n-k).
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +4*(-2*n+5)*a(n-2) +2*(-n+1)*a(n-3) +3*(3*n-7)*a(n-4) +3*(-n+3)*a(n-5) +2*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 05 2015
MATHEMATICA
g[0]:= 1; g[n_]:= Sum[(i/(n - i))*Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_] := Sum[Fibonacci[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)
CROSSREFS
Sequence in context: A269964 A305412 A094810 * A074892 A074874 A051439
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 15 2008
STATUS
approved