login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304640
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} ( exp(n*x) - A(x) )^n.
2
1, 1, 3, 55, 2439, 181711, 19987863, 3019344175, 597283032279, 149571915236911, 46218017081300823, 17270884763586798895, 7677911426885078360919, 4005536546107407400763311, 2423921346754787141028928983, 1684444421472099056470715447215, 1332493495574767096115773084870359, 1190644894731926448479445174157508911, 1193491123893325068744832273320725408343
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( exp(n*x) - A(x) )^n.
(2) 1 = Sum_{n>=0} exp(n^2*x) / (1 + exp(n*x)*A(x))^(n+1).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 55*x^3/3! + 2439*x^4/4! + 181711*x^5/5! + 19987863*x^6/6! + 3019344175*x^7/7! + 597283032279*x^8/8! + 149571915236911*x^9/9! + 46218017081300823*x^10/10! + ...
such that
1 = 1 + (exp(x) - A(x)) + (exp(2*x) - A(x))^2 + (exp(3*x) - A(x))^3 + (exp(4*x) - A(x))^4 + (exp(5*x) - A(x))^5 + (exp(6*x) - A(x))^6 + (exp(7*x) - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + exp(x)/(1 + exp(x)*A(x))^2 + exp(4*x)/(1 + exp(2*x)*A(x))^3 + exp(9*x)/(1 + exp(3*x)*A(x))^4 + exp(16*x)/(1 + exp(4*x)*A(x))^5 + exp(25*x)/(1 + exp(5*x)*A(x))^6 + exp(36*x)/(1 + exp(6*x)*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + 2*x^2/2! + 48*x^3/3! + 2222*x^4/4! + 169080*x^5/5! + 18843302*x^6/6! + 2872307088*x^7/7! + 571992255662*x^8/8! + 143972732107560*x^9/9! + 44668284142577462*x^10/10! + ...
The derivative of e.g.f. A(x) equals the ratio of the series:
A'(x) = [ Sum_{n>=1} n^2 * exp(n*x) * ( exp(n*x) - A(x) )^(n-1) ] / [ Sum_{n>=1} n * ( exp(n*x) - A(x) )^(n-1) ]. - Paul D. Hanna, Aug 06 2018
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (exp(m*x +x*O(x^#A)) - Ser(A))^m ) )[#A] ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2018
STATUS
approved